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  Abstract  

 
 

In this paper, we proposed multi-grid method for the numerical 

solution of parabolic partial differential equations (PDEs) using 

biorthogonal wavelets. The standard multigrid procedure performs 

poorly or may break down when used to solve certain PDEs with 

discontinuous or highly oscillatory coefficients and also involve some 

difficulty to observe fast convergence in low computational time. To 

overcome this, we used Biorthogonal Wavelet Based Multigrid 

Method for solving parabolic PDEs in which the system of equations 

arising from the finite difference discretization is represented in 

wavelet bases. Some of the test problems are presented to demonstrate 

the validity and applicability of the proposed method.  
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1. Introduction  
A variety of problems in physics, chemistry and biology have their mathematical setting as linear and nonlinear 

partial differential equations (PDEs). Many of the phenomena that arise in mathematical physics and 

engineering fields can be described by PDEs. In physics for example, the heat flow and the wave propagation 

phenomena are well described by PDEs. Moreover, most physical phenomena of fluid dynamics, quantum 

mechanics, electricity, plasma physics, propagation of shallow water waves, and many other models are 

formulated by PDEs [14]. Due to these huge applications, there is a demand on the development of accurate 

and efficient analytical or numerical methods able to deal with these equations. Except for a few number of 

these problems, we encounter difficulties in finding their analytical solutions. Many attempts have been made 

to develop numerical methods to solve the linear and nonlinear PDEs, see [12, 15].  

There are several applications of parabolic PDEs in science and engineering. Also many reaction–diffusion 

problems in biology and chemistry are modeled by parabolic PDEs. Analytical solution of certain parabolic 
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PDEs either does not exist or is hard to find. Due to this fact, in the last decades, there have been great advances 

in the development of finite difference, finite element, spectral techniques and finite volume methods for the 

solution of parabolic PDEs. The parabolic PDEs of the forms [4],  

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑓(𝑢) or 

𝑢𝑡 = 𝑢𝑥𝑥 + 𝑔(𝑥, 𝑡) , 0 ≤ 𝑥 ≤ 1 & 𝑡 > 0  
subject to initial condition (IC) and boundary conditions (BCs). Where and are the functions of dependent and 

independent variables. Finite difference methods have been commonly used for the numerical solution of 

boundary value problems (BVPs). To find solutions to PDEs, for most cases, it is necessary to employ 

discretization methods to reduce the sets of PDEs to systems of algebraic equations and such type of equations 

are solved by using direct methods. Direct methods are theoretically producing the exact solution to the system 

in a finite number of steps. In practice, of course, the solution obtained will be contaminated by the round-off 

error. To minimize such round-off error, iterative methods are frequently used for solving linear systems. For 

large systems, these methods are efficient in terms of both computer storage and computational cost. The multi-

grid approach is one of the method to overcome these drawbacks was realized after the works of A. Brandt [2] 

and W. Hackbusch [9]. The multigrid method is largely applicable in increasing the efficiency of iterative 

methods used to solve large system of algebraic equations. 

Recently, many authors De Leon [10] and Bujurke et al. [3, 4] have developed wavelet multigrid methods. 

Also Wesseling [17] introduced the multigrid method which is very useful in increasing the efficiency of 

iterative methods used to solve systems of algebraic equations approximating PDEs. Bastian, Burmeistier and 

Horton [1] was investigated in series of experiments to solve parabolic PDEs using multigrid methods. 

However, when meet by certain problems, for example parabolic type of problems with discontinuous or highly 

oscillatory coefficients, as well as advection-dominated problems, the standard multigrid procedure converges 

slowly with larger computational time or may break down. For this reason, we go for wavelet multigrid method 

in which by choosing the filter operators obtained from wavelets to define the prolongation and restriction 

operators. 

"Wavelets" have been very popular topic of conversations in many scientific and engineering gatherings these 

days. Some of the researchers have decided that, wavelets as a new basis for representing functions, as a 

technique for time-frequency analysis, and as a new mathematical subject. Of course, "wavelets" is a versatile 

tool with very rich mathematical content and great potential for applications. However, wavelet analysis is a 

numerical concept which allows one to represent a function in terms of a set of bases functions, called wavelets, 

which are localized both in location and scale. In wavelet applications to the solution of partial differential 

equations the most frequently used wavelets are those with compact support introduced by Daubechies [10]. 

Several studies explored the usage of Daubechies wavelets to solve partial differential equations [5, 8]. 

This paper gives an alternative method i.e. Biorthogonal wavelet based multigrid method (BWMGM) for the 

numerical solution of parabolic PDEs. The BWMGM formulated in this paper have the following 

characteristics. 

➢ They provide approximations which are continuous and continuously differentiable throughout the 

domain of the problems, and have piecewise continuous second derivatives.  

➢ The methods possess super convergence properties.  

➢ The methods incorporate IC and BCs in a systematic fashion.  

The organization of the paper is as follows. Preliminaries of wavelets are given in section 2. Section 3 

describes the method of solution. Numerical findings and error analysis are presented in section 4. 

Finally, conclusion of the proposed work is discussed in section 5. 

2. Properties of Biorthogonal Wavelets 
The framework of the theory of orthonormal wavelets to the case of biorthogonal wavelets by a modification 

of the approximation space structure is extended by Cohen et al. [6]. In [11], Ruch and Fleet build a 

biorthogonal structure called dual multiresolution analysis that allows for the construction of symmetric scaling 

filters and that can incorporate spline functions. They used instead of scaling  na  and wavelet  nb  filters, 

the new construct yields scaling  na  and wavelet  nb  filters as decomposition and reconstruction. 

Instead of a single scaling function ( )x  and wavelet function ( )x , the dual multiresolution analysis requires 

a pair of scaling functions ( )x  and ( )x  related by a duality condition similarly, a pair of wavelet functions 

( )x  and ( )x . To construct the BDWT matrix, the same thing is used in to build the orthogonal discrete 

wavelet transform matrix. Due to excellent properties of biorthogonality and minimum compact support, CDF 

wavelets can be useful and convenient, providing guaranty of convergence and accuracy of the approximation 

in a wide variety of situations. 

Let’s consider the (5, 3) biorthogonal spline wavelet filter pair, 
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The high pass filter pair andk kb b  for the (5, 3) biorthogonal spline filter pair. 
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In this paper, we use the filter coefficients which are,  

Low pass filter coefficients: 2 1 0 1 2, , , ,a a a a a  and High pass filter coefficients: 
0 1 2, ,b b b  for 

decomposition matrix.  Low pass filter coefficients: 
1 2 0 1 1 0, ,a b a b a b     and High pass filter 

coefficients: 1 2 0 1 1 0 2 1 3 2, , , ,b a b a b a b a b a           for reconstruction matrix.   

Discrete wavelet transforms (DWT): The matrix formulation of the discrete signals and DWT play an 

important part in the wavelet method. As we already know about the DWT matrix and its applications in the 

wavelet method given and are explained in [13]. 

3. Biorthogonal Spline Wavelet Operators 
Using these matrices, we introduced biorthogonal spline wavelet restriction and biorthogonal spline wavelet 

prolongation operators respectively. i.e.,  
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4. Method of Solution 
In this section, we applied the wavelet multigrid method for the numerical solution of linear parabolic PDEs. 

as follows: 

4.1. Multigrid (MG) Method 
A linear partial differential equation of parabolic type is of the form 

,                                

( )

( , ) , 0 1 & 0

t xx

t xx

u u f u or

u u g x t x t

  


     
                            (4.1) 

subject to initial condition (IC) and boundary conditions (BCs). Where  ( , )g x t  is the function of 

independent variables. 

Now consider the Eq. (4.1),using finite difference scheme, discretizing the PDEs into a system of algebraic 

equations. This can be written as follows 

Au = b                                                                  (4.2)              

Where, A  is N N  coefficient matrix, b  is 1N   matrix and u  is 1N   matrix to be determined.  

Solving Eq. (4.2) through the iterative method, we get the approximate solution v  of u . i.e., 

u = e + v v = u - e , where e  is  ( 1N   matrix) error to be determined. 

In the computation of numerical analysis, approximate solution containing some error. There are many 

approaches to minimize the error. Some of them are Multigrid (MG) and Wavelet-multigrid (WMG) methods.  

Now, we are discussing the multigrid method of solution as follows,   

From Eq. (4.2), we get the approximate solution v  for u . Now we first find the residual as 

     ×1 ×1 × ×1
r = b - A vN N N N N

                                                 (4.3) 

http://www.ijesm.co.in/


 ISSN: 2320-0294Impact Factor: 6.765  

23 International Journal of Engineering, Science and Mathematics 

http://www.ijesm.co.in, Email: ijesmj@gmail.com 

 

We reduce the matrices in the finer level to coarsest level using Restriction operator and then construct the 

matrices back to finer level from the coarsest level using Prolongation operator. 

Reduce the matrices in the finer level to coarsest level using Restriction operator as  

/2

1 2 1 0 0 0 0
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N N
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 
 

 

and then construct the matrices back to finer level from the coarsest level using Prolongation operator as. 
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From Eq. (4.3),                          /2 1 /2 1N O N N N
r R r  

                                                                            (4.4)  

and                                                  
2 2 2 2

N N N NO ON N N N
A R A P

   
  

solving,        
× ×1 ×1

2 2 2 2

A e = rN N N N  

we get the residual equation,  
×1

2

e N   with initial guess ‘0’. 

From Eq. (4.4),                           
× ×1×1 4 2 24

r = rN N NN OR                                                                                (4.5) 

and          
× × × ×

4 4 4 2 2 2 2 4

A = AN N N N N N N NO OR P
 

solving,        
× ×1 ×1

4 4 4 4

A e = rN N N N  

 again, we get the residual equation,  
×1

4

e N with initial guess ‘0’.  

So on, the procedure is continuing up to the coarsest level, we have, 

   1×1 1×2 2×1
r = rOR                                                          (4.6) 

 And         
1×1 1×2 2×2 2×1

A = AO OR P  

 solving,      
1×1 1×1 1×1

A e = r  

we get the residual equation,  
1×1

e exactly. 

 Now correct the solution, i.e.,              2×2 2×1 2×1 1×1
u = e + eOP  

solving,      
2×2 2×1 2×1

A u = r , we get 2×1u . 

again, correct the solution               4 1 4 1 0 4 2 2 1[ ] [ ] [ ]u e P u      

solving,                                
4×4 4×1 4×1

A u = r , we get 4×1u . 

So on, continuing the procedure up to the finer level,  

Lastly, correct the solution,         1 1 0 0
1

2 2

[ ] [ ] [ ]N N N N
N

u v P P 
 

   

solving,      
× ×1 ×1

A u = b
N N N N

, we get 
×1u N

. 
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where, 
×1u N

 is the required approximate solution of the system Eq. (4.2). 

4.2. Wavelet Multigrid Method (WMGM) 
The same procedure is applied as explained the MG method (Section 4.1) in which replacing operators 

RBSW and 
PBSW in place of 

OR and 
OP respectively. 

5. Numerical Experiments 
In this section, we applied multigrid for the numerical solution of parabolic partial differential equations using 

Biorthogonal wavelets and subsequently presented the efficiency of the methods in the form of tables and 

figures. The error analysis is considered as maxmax e aE u u  , where eu  and au  are exact and approximate 

solutions respectively.  

Test problem 5.1. Consider homogeneous parabolic PDE [2], 

2t xxu u u                                                             (5.1) 

with initial condition :   ( ,0) sinh , 0 1u x x x                                                   (5.2) 

and boundary conditions: (0, ) 0, (1, ) sinh(1) 0tu t u t e t                                          (5.3) Which 

has the exact solution ( , ) sinh tu x t x e   .By applying the methods explained in the section 4, we obtain 

the numerical solutions and compared with exact solution are presented in figure 1. The maximum absolute 

errors with CPU time of the methods are presented in table 1. 

 
                              N = 64                                                  N = 256 

Fig. 1. Comparison of numerical solutions with exact solution of test problem 5.1 for N=64 & 256. 

 

Table 1.  Maximum error and CPU time (in seconds) of the methods of test problem 5.1. 

N Method 
maxE  Setup time Running time Total time 

 

 

16 

FDM 4.1408e-03 0.0771 4.4553 4.5324 

MG 4.1408e-03 0.0035 0.1411 0.1446 

BWMG 4.1408e-03 0.0204 0.0415 0.0619 

 

 

64 

FDM 2.3758e-03 0.0902 3.0709 3.1611 

MG 2.3758e-03 0.0045 0.1581 0.1626 

BWMG 2.3758e-03 0.0025 0.0525 0.0550 

 

 

256 

FDM 1.2959e-03 0.1532 4.0626 4.2158 

MG 1.2959e-03 0.0045 0.2931 0.2976 

BWMG 1.2959e-03 0.0022 0.1883 0.1905 

 

 

1024 

FDM 6.8050e-04 1.1261 6.6798 7.8059 

MG 6.8050e-04 0.0285 2.4989 2.5274 

BWMG 6.8050e-04 0.0117 0.6257 0.6374 

Test problem 5.2. Next, consider the non-homogeneous parabolic PDE [2], 
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cost xxu u x                                                                 (5.2) with initial condition:              

( ,0) 0 , 0 1u x x                                                   (5.3) and boundary conditions: 

 (0, ) 1 , (1, ) cos(1) 1 0t tu t e u t e t                                 (5.4) 

which has the exact solution ( , ) cos (1 )tu x t x e   .  By applying the methods explained in the section 

4, we obtain the numerical solutions and compared with exact solution are presented in figure 2. The maximum 

absolute errors with CPU time of the methods are presented in table 2. 

 

                                 N = 64                                                         N = 256 

Fig. 2. Comparison of numerical solutions with exact solution of test problem 5.2 for N=64 & 256. 

 

Table 2.  Maximum error and CPU time (in seconds) of the methods of test problem 5.2. 

 

N Method maxE  Setup time Running time Total time 

16 

FDM 6.9470e-03 0.0771 6.9939 7.071 

MG 6.9470e-03 0.0034 0.1433 0.1467 

BWMG 6.9470e-03 0.0020 0.0419 0.0439 

64 

FDM 4.1792e-03 0.0892 3.6699 3.7591 

MG 4.1792e-03 0.0055 0.1932 0.1987 

BWMG 4.1792e-03 0.0025 0.0519 0.0544 

256 

FDM 2.3120e-03 0.1417 3.5273 3.669 

MG 2.3120e-03 0.0046 0.3194 0.324 

BWMG 2.3120e-03 0.0034 0.1900 0.1934 

1024 

FDM 1.2212e-03 0.9679 5.7661 6.734 

MG 1.2212e-03 0.0061 2.4902 2.4963 

BWMG 1.2212e-03 0.0032 0.6757 0.6789 

 

5. Conclusions 
In this paper,BWMG (biorthogonal wavelet based multigrid) method for the numerical solution of parabolic 

PDEs using spline filter coefficients has been presented.  From the above figures and tables, BMGM shows 

significant advantages over the existing methods i.e. FDM and MGM. i.e. the test problems, shows the 

numerical solutions obtained agrees with the exact solution, but CPU time of the proposed scheme is lesser 

than the existing methods. Also the convergence of the presented methods is observed i.e. the error decreases 

when the level of resolution Nincreases.  It is worth mentioning that this method is capable of reducing the 

volume of the computational work as compared to the classical methods and is still maintaining the high 

accuracy of numerical result. Hence the proposed scheme BWMGM is very effective for solving linear partial 

differential equations. 
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